National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Analysis of the influence of thermal effects on thermophotovoltaic system
Kolář, Jakub ; Vyroubal, Petr (referee) ; Šimonová, Lucie (advisor)
This semestral thesis focuses on the description of specific renewable resources in the form of thermophotovoltaic cells using selective radiators with micro/nano structures. This work deals with an introduction of renewable resources and specifically focuses on thermophotovoltaic. Thesis describes basic principles, but also influences affecting the proper functioning of these systems. It also focuses on selective radiators, which are created by mikro/nano structures, and factors that can affect their implementation or simulation. Part of the work are also examples of calculations of basic parameters of the structures, which will be used in the simulations. Next chapters are dealing with simulations which are analyzing thermal effects on termophotovoltaic system. Except the analysis itself there is also partial optimalization solving some of the negative thermal effects.
SELECTIVE EMITOR FOR THERMOPHOTOVOLTAIC SYSTEMS
Šimonová, Lucie ; Hrzina,, Pavel (referee) ; Šály,, Vladimír (referee) ; Vaněk, Jiří (advisor)
The work is focused on research and development of a suitable method for creating a selective emitter for the visible and near infrared region so that they are able to work optimally together with silicon photovoltaic cells in a thermophotovoltaic system. The aim of the work was to develop a new method of creating very fine structures outside the current standard, which will increase the emissivity of the base material to meet the needs of a selective emitter for the VID and NIR region. The methods available to us for the creation of structures were chosen, from which we eliminated all unsuitable ones and we introduced the optimal procedure and parameters for their creation for the selected method. In this work, we focused on both ceramic and metallic materials, whose heat resistance and selective properties are key to this work. Part of the development of the emitter structures was also the need for pretreatment of the substrate itself, where great emphasis was placed on the purity of materials and surface roughness. Since ceramic materials cannot achieve a surface roughness so low that the desired structures can be formed, these materials have been purposefully used primarily for the purpose of combining the base material with thin layers of other high temperature material. Their compatibility and suitability were verified in terms of adhesion and subsequent heat resistance. The main material for the formation of fine structures was purposefully chosen tungsten, for which we verified the influence of the formed structure on the emissivity as well as the thermal stability during long-term exposure to high temperatures. The work thus represents not only a new method of creating very fine structures, which are not normally formed in such subtlety, but also opens the way to new possibilities of combining more materials to achieve the required selectivity of the thermophotovoltaic emitter.
SELECTIVE EMITOR FOR THERMOPHOTOVOLTAIC SYSTEMS
Šimonová, Lucie ; Hrzina,, Pavel (referee) ; Šály,, Vladimír (referee) ; Vaněk, Jiří (advisor)
The work is focused on research and development of a suitable method for creating a selective emitter for the visible and near infrared region so that they are able to work optimally together with silicon photovoltaic cells in a thermophotovoltaic system. The aim of the work was to develop a new method of creating very fine structures outside the current standard, which will increase the emissivity of the base material to meet the needs of a selective emitter for the VID and NIR region. The methods available to us for the creation of structures were chosen, from which we eliminated all unsuitable ones and we introduced the optimal procedure and parameters for their creation for the selected method. In this work, we focused on both ceramic and metallic materials, whose heat resistance and selective properties are key to this work. Part of the development of the emitter structures was also the need for pretreatment of the substrate itself, where great emphasis was placed on the purity of materials and surface roughness. Since ceramic materials cannot achieve a surface roughness so low that the desired structures can be formed, these materials have been purposefully used primarily for the purpose of combining the base material with thin layers of other high temperature material. Their compatibility and suitability were verified in terms of adhesion and subsequent heat resistance. The main material for the formation of fine structures was purposefully chosen tungsten, for which we verified the influence of the formed structure on the emissivity as well as the thermal stability during long-term exposure to high temperatures. The work thus represents not only a new method of creating very fine structures, which are not normally formed in such subtlety, but also opens the way to new possibilities of combining more materials to achieve the required selectivity of the thermophotovoltaic emitter.
Analysis of the influence of thermal effects on thermophotovoltaic system
Kolář, Jakub ; Vyroubal, Petr (referee) ; Šimonová, Lucie (advisor)
This semestral thesis focuses on the description of specific renewable resources in the form of thermophotovoltaic cells using selective radiators with micro/nano structures. This work deals with an introduction of renewable resources and specifically focuses on thermophotovoltaic. Thesis describes basic principles, but also influences affecting the proper functioning of these systems. It also focuses on selective radiators, which are created by mikro/nano structures, and factors that can affect their implementation or simulation. Part of the work are also examples of calculations of basic parameters of the structures, which will be used in the simulations. Next chapters are dealing with simulations which are analyzing thermal effects on termophotovoltaic system. Except the analysis itself there is also partial optimalization solving some of the negative thermal effects.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.